NeurIPS 2025
机器之心回顾2025全球AI顶会与展望2026学术社区趋势
本文回顾了机器之心在2025年围绕ICLR、CVPR、NeurIPS等全球顶级AI会议,在8座城市举办的11场社区活动,包括深度论文研讨和人才交流Meetup,成功构建了连接全球研究者的有温度平台。同时,文章展望了2026年,计划推出更丰富的活动系列,如“AI顶会Happy Hours”,并诚邀科技企业、高校及投资机构等合作伙伴加入,共同深化AI学术与产业生态的连接与合作。
浙大NeurIPS 2025提出COIDO框架:高效优化多模态数据选择,显著降低计算成本
浙江大学团队在NeurIPS 2025上提出的COIDO框架,通过耦合重要性-多样性优化与轻量级评分器设计,革命性地降低了多模态大模型视觉指令微调的数据筛选成本。该框架仅需20%的数据进行训练,即可达到接近全量数据微调的性能,同时在计算效率与筛选质量上均超越现有方法,并展现出强大的泛化与迁移能力,为高效多模态模型训练提供了突破性解决方案。
何恺明NeurIPS 2025演讲:从Faster R-CNN获奖回望目标检测三十年演进之路
本文回顾了何恺明在NeurIPS 2025大会上关于目标检测三十年发展的主题演讲。演讲以荣获“时间检验奖”的Faster R-CNN论文为引,系统梳理了从早期手工特征时代(如Viola-Jones、SIFT、DPM),到深度学习破晓时期(AlexNet、R-CNN),再到以Faster R-CNN为代表的端到端检测范式确立,以及后续YOLO、Transformer、SAM等新技术涌现的完整演进历程。文章不仅总结了关键的技术突破点,更提炼出“用可学习模型替代系统瓶颈”的核心方法论,并以“驶向迷雾”的比喻,展
NeurIPS 2025|CAKE:大模型驱动的贝叶斯优化新配方,让黑箱优化更智能、更高效
这项研究为构建更智能、高效且可解释的贝叶斯优化系统迈出了重要一步。
这届NeurIPS 2025太有看头了!11月22日北京见
2025年,AI 的演进正从“能力突破”迈向“系统构建”阶段。
ReinFlow开源框架:在线强化学习流匹配策略优化机器人性能
ReinFlow是由卡内基梅隆大学、清华大学和德克萨斯大学奥斯汀分校联合开发的开源在线强化学习框架,专门用于微调流匹配策略以优化机器人性能。该框架通过向确定性流路径注入可学习噪声,将流匹配过程转化为随机扩散过程,实现了高效的策略梯度优化。在多个基准测试中,ReinFlow相比预训练模型取得显著性能提升,同时大幅节省训练时间,为机器人学习领域提供了强大的工具支持。
Video-RAG:轻量高效的长视频理解与多模态对齐框架
Video-RAG是由厦门大学、罗切斯特大学和南京大学联合研发的轻量级长视频理解框架,采用多模态辅助文本检索增强生成技术,无需模型微调即可实现高效的视觉-语义对齐。该框架在多个基准测试中超越商业模型,为教育、安防、医疗等领域的视频分析应用提供了低成本、高可扩展的解决方案。